Impact Factor: 4.575

ARSENIC IN DRINKING WATER AND DISEASE PATTERNS IN THE BRAHMAPUTRA VALLEY WITH SPECIAL REFERENCE TO KAMRUP DISTRICT, ASSAM, INDIA

Dr. Tirthankar Sarma¹, Prof. Th. Devala Devi² and Dr. Jyotishmoy Bora³

- ¹Post Doctoral Research Scholar, Manipur International University, Imphal, Manipur
- ² Professor, Mentor, Manipur International University, Imphal, Manipur

ABSTRACT:

Arsenic contamination in drinking water has emerged as a critical public health issue in the Brahmaputra Valley of Assam, India, with Kamrup District being particularly affected. The presence of arsenic in groundwater, primarily due to natural geogenic sources, has led to widespread exposure among local populations, causing both acute and chronic health problems. Chronic exposure to arsenic is associated with skin lesions, pigmentation changes, keratosis, cardiovascular diseases, and various forms of cancer, including skin, lung, and bladder cancers. This paper examines the spatial distribution of arsenic contamination in Kamrup District, identifies the key sources and pathways of exposure, and analyzes the disease patterns observed in the affected population. The study draws on field surveys, laboratory analyses, epidemiological data, and literature reviews to provide a comprehensive understanding of the arsenic crisis in the region. It also highlights mitigation strategies, including water quality monitoring, public awareness campaigns, adoption of arsenic removal technologies, and policy interventions aimed at ensuring safe drinking water. The findings underscore the urgent need for a multi-pronged approach involving government agencies, research institutions, and local communities to address the health impacts of arsenic exposure and improve water management practices..

Keywords: Arsenic contamination, drinking water, Kamrup District, Brahmaputra Valley, groundwater, health impacts, disease patterns, mitigation strategies, India, public health.

I.Introduction:

The Brahmaputra Valley, encompassing the Kamrup District of Assam, is characterized by its fertile plains and extensive river systems. However, the region faces a growing challenge of arsenic contamination in groundwater, primarily due to natural geological processes. Long-term consumption of arsenic-laden water has been linked to various health disorders, including skin lesions, cancers, and cardiovascular diseases. This paper aims to explore the extent of arsenic contamination in Kamrup District and its associated health impacts.

³Co-Mentor, Associate Professor, Bhattadev University, Assam

Impact Factor: 4.575

II. Objectives of the Study:

- 1. To assess the extent and spatial distribution of arsenic contamination in drinking water sources in Kamrup District, Assam, and identify the primary geogenic and anthropogenic factors contributing to groundwater arsenic levels.
- 2. To examine the health impacts and disease patterns associated with chronic arsenic exposure among the local population, with a focus on skin lesions, cancers, and cardiovascular disorders, in order to inform effective mitigation and public health interventions.

III.Methodology:

The study on arsenic contamination in drinking water and associated disease patterns in Kamrup District, Assam, was conducted using a combination of field surveys, laboratory analysis, and secondary data review. The methodology is outlined below:

1. Study Area Selection

Kamrup District was chosen as the study area due to its proximity to the Brahmaputra River, known variations in groundwater quality, and reports of arsenic-related health issues. Specific villages and localities within the district were selected based on accessibility, historical reports of arsenic contamination, and population density.

Data Collection

Primary Data:

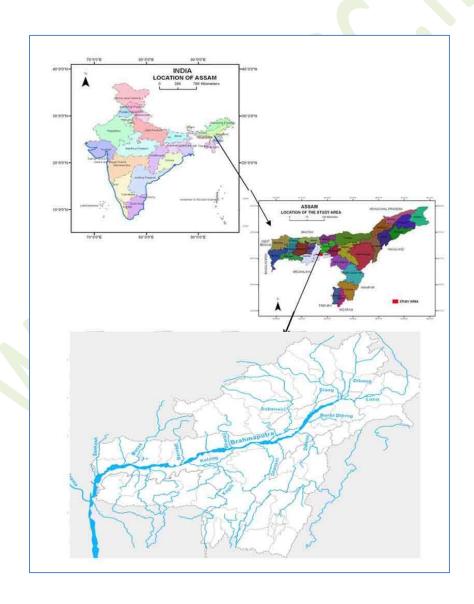
Water Sampling: Groundwater samples were collected from hand pumps, tube wells, and community water sources in selected villages. Samples were collected in precleaned polyethylene bottles, preserved with nitric acid, and stored at 4°C to prevent chemical changes.

Field Surveys and Interviews: Structured questionnaires and interviews were conducted with local residents to gather information on drinking water sources, duration of exposure, and observed health problems. Focus group discussions helped identify prevalent disease patterns and community awareness about arsenic contamination.

Secondary Data:

Historical records of arsenic levels from government and research reports were analyzed.

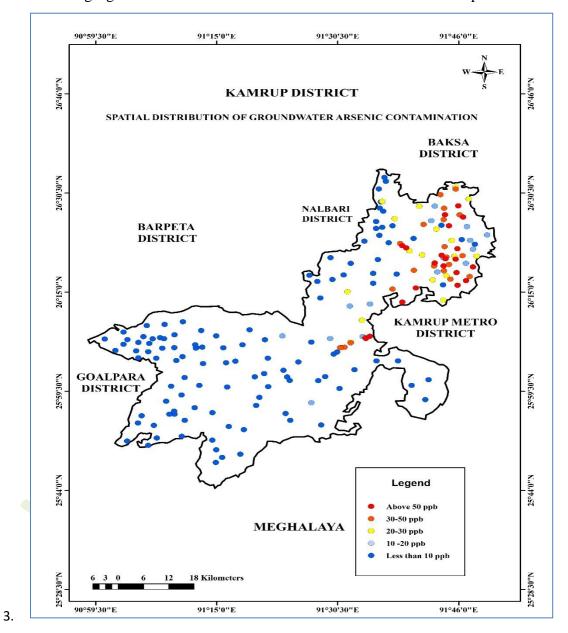
Health records from local healthcare centers and hospitals were reviewed to document cases of arsenic-induced diseases, including skin lesions, cancers, and cardiovascular disorders.


Laboratory Analysis:

Water samples were analyzed using Atomic Absorption Spectrophotometry (AAS) to determine arsenic concentration in micrograms per liter ($\mu g/L$). Quality control procedures, including standard reference materials and duplicate samples, were followed to ensure accuracy.

Data Analysis:

Spatial Analysis: Geographic Information System (GIS) software was used to map arsenic contamination levels and identify high-risk zones within Kamrup District.Statistical Analysis: Correlation analysis was performed to examine the relationship between arsenic concentration and the prevalence of disease patterns. Descriptive statistics summarized demographic profiles, exposure duration, and health outcomes.



IV. Resultss and Discussion:

Spatial distribution pattern of Groundwater arsenic contamination in Kamrup district of Assam

Following figure will show level of arsenic in different tube well samples

Spatial distribution of groundwater arsenic contamination in Kamrup District

Impact Factor: 4.575

Level of groundwater arsenic contamination

Groundwater arsenic contamination in Kamrup district of Assam has been studied with the help of tube well water samples. Water samples for different tube wells have been collected and tested in Tezpur University laboratory to know the value of arsenic contamination in groundwater.

Table 1: Level of Groundwater arsenic contamination in different tube wells

Serial	Arsenic in ppb	Number of	Per cent of
1	Less than 10	116	61.05
2	10-20	15	7.89
3	20-30	18	9.47
4	30-50	21	11.06
5	Above 50	20	10.53
Total		190	100

Source: Primary survey, 2024

Groundwater arsenic contamination in Kamrup district has been mapped by considering the WHO standard. Number of tube wells above WHO maximum permissible limit i.e. 10 ppb is counted and the percentage value of arsenic contaminated wells to the total sampled tube wells are calculated and classified into five classes. Table depict that about 61.05 per cent of the total sample tube well points are safe and less than 10 ppb. About 38.5 per cent sample tube well points are contaminated with arsenic more than WHO limit. Out of the total sample tube well points 7.84 per cent tube well point have arsenic contamination between 10 to 20 ppb. About 9.47 per cent tube well points have arsenic contamination between 20 to 30 ppb. Another 11.06 per cent tube well sample points have arsenic between 30 to 50 ppb. Almost 10.53 per cent tube well has been identified with arsenic concentration above Bauru of Indian Standard (BIS) limit i.e. 50 ppb. The level of arsenic concentration varies in magnitude to great extent.

2.1 Extent of Contamination

A study by Chakrabarty (2011) assessed the heavy metal concentrations in drinking water sources across Kamrup District. While arsenic levels were found to be slightly elevated, they did not exceed the World Health Organization's (WHO) permissible limit of $10 \mu g/L$. However, the presence of

International Journal of Interdisciplinary Research in Science Society and Culture(IJIRSSC)

Vol: 11, Issue:2, (October Issue), 2025 ISSN: (P) 2395-4345, (O) 2455-2909

Impact Factor: 4.575

other heavy metals like cadmium, manganese, and lead in significant concentrations raised concerns

about the overall water quality.

Further investigations revealed that certain areas within Kamrup District, particularly those

situated along the Brahmaputra River's floodplains, exhibited higher arsenic concentrations. These

regions are more susceptible to arsenic leaching due to the dynamic nature of the river's sediment

deposition and groundwater recharge processes.

2.2 Sources of Arsenic

The primary source of arsenic contamination in the Brahmaputra Valley is geogenic, stemming

from the natural dissolution of arsenic-bearing minerals in the aquifers. The region's geology,

characterized by the presence of ferrous-rich sediments, facilitates the mobilization of arsenic into

groundwater sources. Additionally, anthropogenic activities, such as the over-extraction of groundwater

for irrigation and industrial purposes, exacerbate the problem by reducing the dilution capacity of

aquifers.

3. Health Implications of Arsenic Exposure

3.1 Acute and Chronic Effects

Long-term exposure to arsenic-contaminated water has been associated with a range of health

issues. Acute effects include nausea, vomiting, and abdominal pain, while chronic exposure can lead to

more severe conditions such as skin lesions, respiratory problems, and neurological disorders.

3.2 Carcinogenic Risks

Arsenic is classified as a Group 1 carcinogen by the International Agency for Research on

Cancer (IARC). Prolonged ingestion of arsenic-contaminated water has been linked to an increased risk

of skin, lung, and bladder cancers. In Kamrup District, several cases of arsenic-induced cancers have

been reported, underscoring the urgent need for effective mitigation strategies.

3.3 Cardiovascular and Metabolic Disorders

Recent studies have indicated that arsenic exposure may also contribute to cardiovascular

diseases, including ischemic heart disease, even at levels below the WHO's permissible limit. A study

conducted by Columbia University highlighted the heightened risk of cardiovascular diseases in

populations exposed to arsenic-contaminated drinking water in Assam.

Impact Factor: 4.575

THE PART OF THE PA

4. Disease Patterns in Kamrup District

Epidemiological studies in Kamrup District have observed a higher prevalence of arsenic-related

diseases compared to other regions. Skin lesions, characterized by pigmentation changes and keratosis,

are among the most common manifestations. Additionally, there has been an uptick in cases of lung and

bladder cancers, particularly in areas with elevated arsenic concentrations. The district's healthcare

infrastructure, though improving, faces challenges in diagnosing and treating these conditions due to

limited resources and awareness.

5. Mitigation Strategies

5.1 Water Quality Monitoring

Regular monitoring of groundwater sources is essential to detect arsenic contamination early.

Establishing a comprehensive database of water quality parameters can aid in identifying high-risk

areas and implementing targeted interventions.

5.2 Public Awareness Campaigns

Educating the local population about the risks of arsenic exposure and promoting the use of alternative

water sources, such as rainwater harvesting and surface water treatment, can significantly reduce health

risks.

5.3 Technological Interventions

Implementing cost-effective arsenic removal technologies, such as activated alumina filters and reverse

osmosis systems, can provide safe drinking water to affected communities. Collaborations with research

institutions and NGOs can facilitate the dissemination of these technologies.

5.4 Policy and Regulatory Measures

The government should enforce stringent regulations on groundwater extraction and promote

sustainable water management practices. Incentivizing the adoption of arsenic-safe technologies and

ensuring equitable access to clean water are crucial steps toward mitigating the crisis.

V. Conclusion:

Arsenic contamination in drinking water poses a significant public health challenge in Kamrup

District, Assam. While the concentrations in some areas are below the WHO's permissible limit, the

Impact Factor: 4.575

cumulative exposure over time has led to a discernible increase in arsenic-related diseases. A multifaceted approach involving rigorous monitoring, public education, technological interventions, and policy reforms is imperative to address this issue effectively. Protecting the health of the population requires a concerted effort from all stakeholders, including government agencies, research institutions, and local communities.

References:

- 1] Ahmed, F. (2000): An Overview of Arsenic Removal Techniques in Bangladesh and India, Unpublished Ph.D. Thesis, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
- 2] Ahmed, M., Ahuja, S, Alauddin, M., Hug, S., Lloyd J., Pichler, T. Saltikov, Stufe, M. and Van Green, A. (2006): Ensuring Save Drinking Water in Bengal, *Science*, Vol.1, American Association for the advancement of Science Publishing, USA, pp.102-107
- 3] Ahuja, S (2008): The problem of arsenic contamination of groundwater. In S. Ahuja (ed) Arsenic Contamination of Groundwater Mechanism Analysis and Remediation, New Jersey and Canada, John Wiley and Sons, inc. pp. 21-43
- 4] Akter, A., Ali, M.H. (2011): Arsenic Contamination in Groundwater and its Proposed Remedial measures, *Int. J. Environ*, Vol.8, No.2, Sci Tech Publication, New Delhi, pp 433-443
- 5] ATSDR (Agency for Toxic Substances and Disease Research) (2007): Department of Health and Human Services, Toxicological profile for arsenic.
- 6] Bhuyan, B. (2012): Arsenic in Groundwater: A Study in Lakshimpur District, Assam, India, Lambart Academic Publishing, Lakhimpur, Assam.
- 7] Bordoloi, S.(2013): Removal of Arsenic and Iron from Groundwater by Oxidation- Coagulation at Optimized pH, Unpublished Ph. D. Thesis, Tezpur University, Tezpur, Assam India
- 8] Chakrabarti D., Mukharjee C., Sengupta, S., Rahman, M., Chowdhury, K., Lodh, D., Chandra, R., Chakraborti, A., and Gautam, K. (2003): Arsenic Groundwater Contamination in Middle Ganga Plain, Bihar, India: A Future Danger?, *Environmental Health Perspective*, Vol. 3, No. 9, The National Institute of Environmental Health Sciences Publication, pp1194-1201
- 9] Chakraborty, D., Rahman, M., Das, B., and Munil, M. (2010): Status of Groundwater Arsenic Contamination in Bangladesh: A Fourteen Year Study Report, *Water Research*, Vol. 44, No.19, ELSEVIER Publication, pp. 5789-5802